中介与调节 | 混淆概念区分
1 中介效应
考虑自变量X对因变量Y的影响,如果X 通过影响变量M而对Y产生影响,则称M为中介变量,中介变量阐明了一个关系或过程“如何”及“为何” 产生。
例如,上司的归因研究:下属的表现→上司对下属表现的归因→上司对下属表现的反应, 其中的“上司对下属表现的归因”为中介变量。
假设所有变量都已经中心化(即将数据减去样本均值,中心化数据的均值为0)或者标准化(均值为0,标准差为1),可用下列回归方程来描述变量之间的关系(图1 是相应的路径图):
其中方程(1)的系数c 为自变量X对因变量Y的总效应;
方程(2)的系数a为自变量X对中介变量M的效应;
方程(3)的系数b是在控制了自变量X的影响后,中介变量M对因变量Y的效应;系数c′是在控制了中介变量M 的影响后,自变量X对因变量Y的直接效应;e1-e3 是回归残差。
中介效应等于间接效应(indirect effect),即等于系数乘积ab,它与总效应和直接效应有下面关系:
Y =cX +e1 (1)
M =aX +e2 (2)
Y =c' X +bM +e3 (3)
c = c′+ab (4)简单中介效应中成立,多重中介效应不成立。
中介效应的因果逐步回归法模型
2 调节效应
如果变量Y与变量X的关系是变量M的函数,称M为调节变量。就是说,Y 与X 的关系受到第三个变量M的影响。调节变量(moderator)所要解释的是自变量在何种条件下会影响因变量,也就是说,当自变量与因变量的相关大小或正负方向受到其它因素的影响时,这个其它因素就是该自变量与因变量之间的调节变量。调节变量可以是定性的(如性别、种族、学校类型等),也可以是定量的(如年龄、受教育年限、刺激次数等),它影响因变量和自变量之间关系方向(正或负)和强弱,调节变量展示了一个关系“何时”和“为谁”而增强或减弱。
如,学生一般自我概念与某项自我概念(如外貌、体能等)的关系,受到学生对该项自我概念重视程度的影响:很重视外貌的人,长相不好会大大降低其一般自我概念;不重视外貌的人,长相不好对其一般自我概念影响不大,从而对该项自我概念的重视程度是调节变量。
在做调节效应分析时,通常要将自变量和调节变量做中心化变换(即变量减去其均值,但现有文献发现中心化并不能改变调节的效应量。
Y =aX +bM +cXM +e (1)
调节效应的基本模型
3 中介效应与间接效应的联系区别
中介效应都是间接效应,但间接效应不一定是中介效应。实际上,这两个概念是有区别的。首先,当中介变量不止一个时,中介效应要明确是哪个中介变量的中介效应,而间接效应既可以指经过某个特定中介变量的间接效应(即中介效应),也可以指部分或所有中介效应的和。其次,在只有一个中介变量的情形,虽然中介效应等于间接效应,但两者还是不等同。中介效应的大前提是自变量与因变量相关显著,否则不会考虑中介变量。但即使自变量与因变量相关系数是零,仍然可能有间接效应,这种观点目前正在激烈的讨论中。
多重中介效应基本模型
4 调节效应与交互效应的联系区别
调节效应和交互效应这两个概念不完全一样。在交互效应分析中,两个自变量的地位可以是对称的,其中任何一个都可以解释为调节变量;也可以是不对称的,只要其中有一个起到了调节变量的作用,交互效应就存在。这一点从有关讨论交互效应的专著中可以看出。但在调节效应中,哪个是自变量,哪个是调节变量,是很明确的,在一个确定的模型中两者不能互换。
例如,要研究数学能力的性别差异,将年级作为调节变量,这个问题关注的是性别差异,以及性别差异是否会随年级而变化。如果从小学一年级到高中三年级都获得了各年级学生有代表性的样本,每个年级各用一份测试题,所得的数据就可以进行上述分析。但同样的数据却不能用于做年级为自变量、数学能力为因变量、性别为调节变量的分析,因为各年级的测试题目不同,得分没有可比性,因而按调节效应的分析方法,分别不同性别做数学能力对年级的回归没有意义。要做数学能力对年级的回归,应当用同一份试题测试所有年级的学生。
5 简单中介效应与调节相应的比较
温忠麟等人(2005)对中介效应与调节效应进行比较后,得出如下结果:
中介效应与调节效应的比较
来源:姜永志老师
声明:部分文章和信息来源于互联网,如转载内容涉及版权等问题,请立即与小编联系,我们将迅速采取适当的措施。
感谢您抽出
更多精彩请点击下列分类文章
↓↓↓
一开始,治疗师不需要做任何事,只需要带着感受坐在那里,包容他们,最终理解他们,通过这个过程从而强有力地影响患者。当患者观察到他们的治疗师承受了他们以前认为无法承受的感觉,变化的过程就可能发生了。